Inferring Optimal Species Trees Under Gene Duplication and Loss
نویسندگان
چکیده
Species tree estimation from multiple markers is complicated by the fact that gene trees can differ from each other (and from the true species tree) due to several biological processes, one of which is gene duplication and loss. Local search heuristics for two NP-hard optimization problems - minimize gene duplications (MGD) and minimize gene duplications and losses (MGDL) - are popular techniques for estimating species trees in the presence of gene duplication and loss. In this paper, we present an alternative approach to solving MGD and MGDL from rooted gene trees. First, we characterize each tree in terms of its "subtree-bipartitions" (a concept we introduce). Then we show that the MGD species tree is defined by a maximum weight clique in a vertex-weighted graph that can be computed from the subtree-bipartitions of the input gene trees, and the MGDL species tree is defined by a minimum weight clique in a similarly constructed graph. We also show that these optimal cliques can be found in polynomial time in the number of vertices of the graph using a dynamic programming algorithm (similar to that of Hallett and Lagergren(1)), because of the special structure of the graphs. Finally, we show that a constrained version of these problems, where the subtree-bipartitions of the species tree are drawn from the subtree-bipartitions of the input gene trees, can be solved in time that is polynomial in the number of gene trees and taxa. We have implemented our dynamic programming algorithm in a publicly available software tool, available at http://www.cs.utexas.edu/users/phylo/software/dynadup/.
منابع مشابه
Inferring phylogeny from whole genomes
MOTIVATION Inferring species phylogenies with a history of gene losses and duplications is a challenging and an important task in computational biology. This problem can be solved by duplication-loss models in which the primary step is to reconcile a rooted gene tree with a rooted species tree. Most modern methods of phylogenetic reconstruction (from sequences) produce unrooted gene trees. This...
متن کاملMost parsimonious reconciliation in the presence of gene duplication, loss, and deep coalescence using labeled coalescent trees.
Accurate gene tree-species tree reconciliation is fundamental to inferring the evolutionary history of a gene family. However, although it has long been appreciated that population-related effects such as incomplete lineage sorting (ILS) can dramatically affect the gene tree, many of the most popular reconciliation methods consider discordance only due to gene duplication and loss (and sometime...
متن کاملAssessing approaches for inferring species trees from multi-copy genes.
With the availability of genomic sequence data, there is increasing interest in using genes with a possible history of duplication and loss for species tree inference. Here we assess the performance of both nonprobabilistic and probabilistic species tree inference approaches using gene duplication and loss and coalescence simulations. We evaluated the performance of gene tree parsimony (GTP) ba...
متن کاملInferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees
MOTIVATION Gene duplication (D), transfer (T), loss (L) and incomplete lineage sorting (I) are crucial to the evolution of gene families and the emergence of novel functions. The history of these events can be inferred via comparison of gene and species trees, a process called reconciliation, yet current reconciliation algorithms model only a subset of these evolutionary processes. RESULTS We...
متن کاملFrom gene trees to species trees II: Species tree inference in the deep coalescence model
When gene copies are sampled from various species, the resulting gene tree might disagree with the containing species tree. The primary causes of gene tree and species tree discord include lineage sorting, horizontal gene transfer, and gene duplication and loss. Each of these events yields a different parsimony criterion for inferring the (containing) species tree from gene trees. With lineage ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
دوره شماره
صفحات -
تاریخ انتشار 2013